The srank Conjecture on Schur’s Q-Functions

نویسندگان

  • William Y. C. Chen
  • Donna Q. J. Dou
  • Robert L. Tang
  • Arthur L. B. Yang
چکیده

We show that the shifted rank, or srank, of any partition λ with distinct parts equals the lowest degree of the terms appearing in the expansion of Schur’s Qλ function in terms of power sum symmetric functions. This gives an affirmative answer to a conjecture of Clifford. As pointed out by Clifford, the notion of the srank can be naturally extended to a skew partition λ/μ as the minimum number of bars among the corresponding skew bar tableaux. While the srank conjecture is not valid for skew partitions, we give an algorithm to compute the srank. MSC2000 Subject Classification: 05E05, 20C25

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Lift of the Schur’s Q-functions to the Peak Algebra

We construct a lift of the Schur’s Q-functions to the peak algebra of the symmetric group, called the non-commutative Schur’s Q-functions, and extract from them a new natural basis with many nice properties such as the positive right-Pieri rule, combinatorial expansion, etc. Dually, we get a basis of the Stembridge algebra of peak functions refining the Schur’s P-functions in a simple way.

متن کامل

Equality of Schur’s Q-functions and Their Skew Analogues

We find a simple criterion for the equality Qλ = Qμ/ν where Qλ and Qμ/ν are Schur’s Q-functions on infinitely many variables.

متن کامل

On Silverman's conjecture for a family of elliptic curves

Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...

متن کامل

Schur Q-functions and a Kontsevich-Witten genus

The Virasoro operations in Witten’s theory of two-dimensional topological gravity have a homotopy-theoretic interpretation as endomorphisms of an ordinary cohomology theory with coefficients in a localization of I. Schur’s ring ∆ of Q-functions. The resulting theory has many of the features of a vertex operator algebra.

متن کامل

Partial proof of Graham Higman's conjecture related to coset diagrams

Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008